miércoles, 27 de mayo de 2015


DEER v 5.1 on May 2015 is the result to review the bugs of the previous versions. We have had the necessity to add some corrections to the algorithms because the interface has a list of records that the usser have added along the process in each session. Now each session may be a project and this can be reopened after, if the user have saved it before. We have changed the start that allows to the users choosing or add your language in which they want to interact. For demonstrative issues have been implemented English and Spanish.

The initial bar to display the options for file type, type plot, type numerical process, Fourier analysis, filtering and responses spectrum from a degree of freedom is presented in the upper right corner of the monitor.

DEER v 5.1 read the following formats that are included in this version:

  1. RAD-CIRES A.C. - Ascii y Binario.
  2. SSR Kinemetrics - Binario.
  3. AV2 CICESE.A.C. - Binario.
  4. SEGY Passcal Instruments - Binario.
  5. BMSF v 1 y 2 - Ascii.
  6. SAC - Ascii y Binario.
  7. SEISAN - Binario.
  8. EVT Kinemetrics - Ascii y Binario.
  9. GSE - Ascii y Binario.
  10. REFTEK - Ascii y Binario.
  11. MSEEED - Ascii y Binario.
  12. PITSA - Ascii.
  13. COLUMNA - Ascii.
The subroutines to read files have been written into matlab language, in order to read from the binary file directly. The selection process of the file type is to display files inner of actual work directory (default) or directory of your choice. The second list is to sort according to the user's need, as well as choose the channel of interest. The list on the left acts as a viewfinder and the list on the right as a selector and executor of readings.

The options about availables processes remain in the same order, by constrast, the options about baseline correction have increased, to allow to the users observe the behavior of the data after applying a numerical method, and thus the user's convenience select one or choose not apply this.

The format of figure for display the trace have read is the same, however we have activated a second figure to display specific channel selected. The idea of ​​improving the visibility and presentation when we work with multichannels or several records..

In the Fourier analysis we have added the average of spectrums if we select specific channels. The option to ratio of maximun values between horizontal and vertical motion is in development.

The presentation of the results of response spectra of a degree of freedom have changed due inconsistencies in the axis to show results of particular cases.

Regarding the automatic identification of times into the records, the identification of the start and end of the Arias's intensity is the same that old versions because is an alternative to estimate a percentage of the energy contained in the seismic signal. In this version we have incorporated the automatic detection of seismic phases P and S, however is being tested.

When we are working with environmental noise, We can estimate the mean of a spectrum of all serie applying multiple windows of the same length and overlap if it is necessary.

Help's panel will remain a quick alternative to learn about application use. Now we can  navigate for all manual, from any current panel. We thank each of the collaborators who directly or indirectly made ​​possible to finish a stage over this project (see manual).


Acosta, J. G. (1990). Manual de aplicación del paquete de Procesamiento Estándar de Acelerogramas (Ver. 5). (Tabla 8. Descripcion formato AV2) CICESE.

Beauducel Francois. (2011). RDMSEED Read miniSEED format file. Institut de Physique du Globe de Paris.

Carreño E., Bravo B., Suarez A. y Tordesillas J. M. (1999). Registro y Tratamiento de Acelerogramas. Instituto Geográfico Nacional. Física de la Tierra: 11: p.p. 81-111.

Chopra Anil. K. (1995). Dynamics of Structures. Theory and Applications to earthquake engineering. Chapter 3. Englewood Cliffs, New Jersey. Ed. Pretince Hall; p.p. 61-118.

Clough Ray W. (2003). Dynamics of Structures. Chapter 25. Berkeley, California. 3a. Ed. Computers & Structures; p.p. 575-611.

Converse, A. M. and Gerald Brady A. (1992). BAP: Basic Strong-Motion Accelerogram Processing Software version 1.0: USGS Open-File Report number 92-296A, USGS, Menlo Park, CA. 170 pages.

Garcia R. L. E. (1998). Dinamica Estructural Aplicada al Diseno Sismico. Capitulo 5. Espectros de respuesta. Universidad de los Andes. Bogota, Colombia. p.p. 98-105.

GSE. (1997). Provisional GSE2.1 Message Formats & Ptotocols. Operations Annex 3. GSETT-3. p. 124.

Havskov, J., and L. Ottemöller (1999). SEISAN earthquake analysis software. Seismological Research Letters 70 (5), 522–528.

Havskov, J., and L. Ottemöller (2003). SEISAN: The Earthquake Analysis Software for Windows, Solaris and Linux. Version 7.2, users manual. 

H. Press William. (1986).Numerical Recipes in Fortran 77. p.p. 501-502. (Revisado en 1998 p.p. 125, 394.) 

IRIS PASSCAL Instrument. (2011). PASSCAL SEG-Y y SAC Trace Header.

K. Ahern Timothy and Dost Bernard. (2006). Standard for Exchange of Earthquake Data. Reference Manual. Incorporated Research Institutions for Seismology. 209 p.   

Kanasewich E. R. (1981). Time Sequence Analysis in Geophysics. Thrid Edition. The University of Alberta Press. p.p. 252-266.

Konno, K. and T. Ohmachi. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor; Bulletin of the Seismological Society of America. 88. p.p. 228-241.

Mena Sandoval J. E. (1991). Sistema de procesamiento avanzado de acelerogramas para el CENAPRED. Informe RT-3. Coordinación de Investigación e Instrumentación Sísmica. CENAPRED México. p.p. 4-1.

Navin C. Nigam and Paul C. Jennings. (1968). Digital Calculation of Response Spectra from Strong-Motion Earthquake Records. A report on research conducted under a grant from the National Science Foundation. Research Laboratory California Institute of Technology. Pasadena, California. June; 65 p.

Navin C. Nigam and Paul C. Jennings. (1969). Calculation of response spectra from strong-motion earthquake records. Bulletin of the Seismological Society of America. April; 59:909-922.

Newmark Nathan. M. and Hall William J. (1982). Earthquake Spectra Design. Chapter 3. Design Response Spectra. Earthquake Engineering Research Institute. p. p. 29-48.

Oppenheim A. V. y Schafer R.W. (1999). Discrete-Time Signal Processing, Prentice Hall. 2ª. Ed. pp. 140-158, 440-465.

Ordaz M. Castellanos F., y Zapata A. (2005). Manual de uso programa Degtra A4. Suavizado Tomado de la opción AYUDA del programa DEGTRA A4 Ver 5.4. p.p. 13. 

Paz Mario. (1992). Dinámica Estructural. Teoría y Cálculo. Editorial Reverté. S. A. p. 650.

Refraction Technology Inc. (2006). 130 Recording Format Specification. For 130 CPU firmware v2.7.3 (PASSCAL compliant). p.p 1-4 - 3-32.
Simons J. F. (2009). Source code of function stalta, MatLab.

Scherbaum, F., and J. Johnson (1993). PITSA, Programmable Interactive Toolbox for Seismological Analysis. Technical report, IASPEI Software Library.

The MathWorks, Inc. http://www.mathworks.com/
Trifunac, M. D. (1970). Low frequency digitization errors and a new method for zero baseline correction of strong-motion accelerograms. EERL70-07. California Institute Technology, USA. 55 p.

Trifunac, M. D. (1972). A note on correction of strong-motion accelerograms for instrument response. Bulletin of the Seismological Society of America. 62: 401-409 p.

Trifunac, M. and V. Lee. (1973). Routine computer processing of strong-motion accelerograms. EERL73-03. California Institute Technology, USA. 360 p.

NOTE: This code is designed to support students interested in the area of seismology. 

last update  May, 27th 2015.

The DEER Suite written and maintained by M. C. Euclides Ruiz Cruz